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A dipole fit to electromagnetic form factors is used to determine a quark density 
p in the nucleon. A radial tensor potential is used to bind the quarks into states 
of good J, Jz, and parity. The tensor potential radial component is taken to satisfy 
the equation T' -~ Top, where To is a parameter of the model. This linear divergence 
equation can be simultaneously solved with the Dirac equation for the bound 
quark wave functions. A self-consistent solution is possible where the mass 
density used as the source for the binding potential is the same as that determined 
from the solution for the quark wave functions. 

1. I N T R O D U C T I O N  

In the QCD theory, the quarks interact with the exchange of  gluons 
characterized by a color vector potential. The quarks serve as the source 
terms of  the color vector potential. The quarks in any system are assumed 
to form an SU(3) color  singlet. A g luon-g luon  interaction makes the color  
vector potential equations nonlinear. The proton is modeled here as three 
interacting colored quarks. The color charge density f rom the quarks is taken 
as proportional to the electric charge density inferred f rom electromagnetic 
form factor measurements.  Electromagnetic form factors of  the nucleons are 
well reproduced by the dipole fit. From this one can infer an exponentially 
damped radial distribution of  electric charge, and also for the quark color  
charge density serving as the source for the QCD color  vector potentials. A 
tensor potential is used here to create bound quark states without tunneling 
possible via a Klein paradox. 

The quarks are described here by a solution of  the Dirac equation in a 
one-body external potential. This one-body potential is a shell model potential 
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resulting from the quark-quark interactions presumably described by QCD. 
It is not certain if the one-body potentials used here should be colorless or 
not. The potentials are assumed colored, and coupled to the quark color 
charge density. Miller (1975) has shown that the only one-body external 
potential components capable of satisfying simultaneously the requirements 
of angular momentum conservation, Hermiticity, and time reversal invariance 
are a scalar, a time component of a vector, or a radial component of a tensor 
potential. The quark binding potential is assumed to be the radial component 
of a tensor potential in this paper. The other possibilities are neglected. The 
QCD equations utilize a color vector potential. The solution of the QCD 
equations is not at hand, but is assumed to not result in a scalar external 
potential. A possibly more likely result of solving the QCD equations would 
be the time component of a vector potential. The time component of a one- 
body vector potential, however, suffers from the Klein paradox, and by itself, 
cannot confine quarks (Su and Yuhong, 1984; Su and Ma, 1986; Galic, 1988). 

The radial component of a tensor potential can confine quarks as a 
relativistic interaction without the Klein paradox (Dominquez-Adame, 1992). 
Bachas (1986) has shown that a heavy quark-antiquark potential must be 
everywhere attractive and a nondecreasing function of their separation. This 
has experimentally observable consequences in the level ordering of potential 
models (Baumgartner et al., 1985), using the nonrelativistic Schrrdinger 
equation. It is speculated here that the one-body quark potential should also 
be an attractive nondecreasing function of their separation. This is consistent 
with the Lipkin rule, based on a one-gluon exchange analysis, which states 
that the quark-quark potential is one-half of the quark-antiquark potential. 
Self-consistency requires that the solution of the Dirac equation for the 
quark wave functions match the color charge density used as the source in 
determining the potential that binds the quarks. 

2. THEORY 

The most general Dirac equation consistent with good total angular 
momentum and z component, parity, Hermiticity, and time-reversal invari- 
ance is 

{cot'p + ~[mc 2 + Us(r) + "y~ ) -- "y~ = E ~  (1) 

U~(r) is a scalar potential that is a function of r magnitude only. Uv(r) is the 
time component of a vector potential, a function of separation only. The 
general tensor potential is written as 

( r~  Ut~  = ( ' y ~  - ~ l ~  ) Ut~v/2i (2) 

This tensor potential is antisymmetric in its two space-time indices. With 
parity, total angular momentum, and its z component observed, the only 
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allowed terms remaining of the tensor potential involve one index to be zero, 
corresponding to time, and the other index being a space index. The allowed 
combination by the above conservation laws is a radial component of the 
tensor potential that is a coefficient of ~/0~/. ~. The tensor potential component 
in this radial direction can be a function of separation only. The nonvanishing 
part becomes ~/0~/. ~T(r), where the nonvanishing components are written as 

iUtj---- U t o j -  Utjo (3) 

In the electromagnetic field case, the corresponding tensor is F ~ and the 
corresponding nonvanishing components would be 

F Oj - F jO = - 2 i E y  (4) 

which is thejth component of the electric field. Utr(r) is the radial component 
of a tensor potential, and is required by Hermiticity and time-reversal invari- 
ance to be pure imaginary and a function of r magnitude only. This tensor 
potential is analogous to a Pauli or an anomalous magnetic moment interaction 
in electromagnetism. The tensor potential is written as 

Ut,(r) = - iT ( r )  (5) 

The QCD equations utilize a color vector potential, with no scalar poten- 
tial, so the possible scalar potential allowed in the Dirac equation, U~(r), is 
assumed to be zero. The time component of a vector potential, U,,(r), by itself, 
cannot absolutely confine a fermion, as it suffers from the Klein paradox. 
This potential component is therefore assumed to be zero in this work. 

From the correspondence noted between equations (3) and (4), the equa- 
tion for the one-body tensor potential is modeled from V-E = p, by asking 
that the divergence of the radial component of the tensor potential to be 
proportional to the quark color charge density, which is assumed proportional 
to the electromagnetic charge density, as inferred from nucleon electromag- 
netic form factor fits. Thus the tensor potential radial component is deter- 
mined from 

V.  f T  = To exp(-ctr) (6) 

The dimensionality of this divergence for linear field equations is d = 3. 
The self-interactions of the nonlinear QCD equations are thought to keep the 
field lines confined to nearly linear regions of space. In d dimensions, this 
divergence equation is solved as 

f0 T = Tor (l-a) exp(- -ar)rd- ldr  (7) 

Nonlinear quantum field effects may change the dimensionality. The one- 
body tensor potential is assumed to partially fill (Nakamura, 1993) the space 
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around the quark charges with a characteristic fractal dimension d. That 
dimension is viewed as a model parameter here, along with the potential 
strength parameter To. The nonlinear interaction of the QCD theory is not 
solved for here. These nonlinear interactions are modeled here by the dimen- 
sionality parameter d being less than the three expected in a linear theory. 
With the source term being proportional to the color charge density, the 
potential will be a monotonic, nondecreasing function of r, only for d less 
than or equal to one. For d exactly one, the tensor potential approaches a 
constant for large separations. The tensor potential will diverge with large 
separations if d is less than one. For the case of d exactly one, in the limit 
of ct goes to zero, the tensor potential goes over to the Dirac oscillator model 
(Moshinsky and Szczepaniak, 1989; Benitez et al., 1990). Tensor potentials 
associated with d = 3, 2, 1, and 2/3 are shown in Fig. 1. Nonmonotonic 
behavior is seen for d greater than one. The desired attractive monotonic, 
nondecreasing behavior of T is attained if d is one or less and To positive. 
For a dimensionality of one, the tensor potential can be thought of as existing 
in lines between the quarks of a system, whereas for a d of 3, the potential 
can be thought of as existing in a spherical volume centered about each 
quark. For a dimensionality of 2/3 the potential can be described as existing 
in chains of beads along lines between quarks. 
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Fig. l .  Tensor potentials for various values of the dimensionality. 
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Expanding the quark wave function into states of good angular momen- 
tum, parity, and energy, we have 

(8) = (I/r) iGY7 ~ 

where F and G are the large and small component radial wave functions. 
Parity is given by ( -  1)J+~c2; to has the value plus or minus one, and is minus 
one for the ground state. 

Defining 

K = to(j + 1/2) (9) 

we find, by substituting equation (8) into the Dirac equation, the large and 
small component radial wave equations 

F'  + [(T/hc) + K/r]F = [(E + mc2)lhc]G 

- G' + [(T/hc) + KIr]G = [(E - rnc2)/hc]F (10) 

The dipole fit to the form factor of the proton (Bosted et al., 1992) suggests 
for the electric charge density 

p = exp( -e t r )  where ct = 842.6 MeVIhc  (11) 

Assuming that the quark distribution in a nucleon makes the dominant contri- 
bution to the charge distribution measured, this implies that an exponentially 
damped quark radial wave function occurs in the nucleons. Thus F and G 
would have the form of being proportional to r e x p ( - a r ) ,  where a is et/2. 
What sort of potential T will bring that about? The second-order differential 
equation for F is, setting h and c to 1, 

- F "  + IT 2 - T'  + 2KT/r + K(K + 1)/r2]F = (E 2 - m2)F (12) 

The case of K = - 1, the ground state, is considered now. If T goes to zero 
for large r, then E 2 is less than m 2 in a bound-state wave function. But the 
tensor potential going to zero implies a potential in contradiction to a mono- 
tonic, nondecreasing attractive potential. If T goes to a constant, then E 2 is 
greater than m 2, which also allows a bound-state solution to equation (12) 
if the constant value is large enough. This situation is compatible with a 
dimensionality-one solution of equation (7). This dimensionality will permit a 
self-consistent solution of equations (7) and (10) to be obtained. To absolutely 
confine quarks in this model, the dimensionality d must be less than one. 
Such values, however, do not result in exponentially damped radial equations 
for the quark wave functions. Those cases will be considered separately. For 
K = - 1, the effective potentials of (12) for various values of dimensionality 
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d can be seen in Fig. 2. The dimensionality has to be 1 or less for these 
effective potentials to be nondecreasing, attractive potentials. The effective 
potential appearing in equation (12) for a d of 2/3 is very similar to a potential 
previously used by Fabre della Ripelle (1988) in fitting meson spectra with 
a Schr6dinger equation approach. For dimensionalities less than one, this 
tensor potential will confine quarks in all states where K is a positive or 
negative integer. 

3. THE SELF-CONSISTENT SOLUTION 

If d is exactly one, a self-consistent solution can be found where the 
mass density p is taken as the exponentially damped quark density, which is 
used as the radial dependence of the source for the radial tensor potential, 
which is then used to determine the quark wave functions self-consistently. 
With To = 0.5205oq the K = -1 ,  ground-state solution of equation (12) 
decays exponentially. Figure 3 shows the large and small component radial 
wave functions. Both components closely resemble the analytic form of r 
times an exponential. By adjusting the quark energy and mass, the relative 
normalization of F and G has been chosen to reproduce the axial vector 
coupling constant. The numerical value found for E 2 - m z is 0.38108(1/f2). 
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Fig. 2. Effective radial positive energy potentials for various values of  the dimensionality. 
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Fig. 3. Large and small component radial wave functions with mass chosen to fit the axial 
vector coupling constant. 

The calculated electric charge density is smaller than the dipole fit for dis- 
tances less than 1/2 fermi, The calculated charge density smoothly matches 
the dipole fit for larger distances. The ratio is a constant for distances larger 
than 1 fermi. This tensor potential has resulted in a calculated charge density 
with the same exponential shape as the charge distribution used to generate 
the tensor potential. This is then a self-consistent calculation. 

4. SUMMARY 

A one-body tensor potential is used to bind quarks in a Dirac equation 
approach. The divergence of the tensor potential is taken proportional to the 
quark color charge density. A fractal dimension to the divergence is invoked 
to produce attractive monotonic, nondecreasing one-body potentials. A 
dimension of one or less will satisfy this criterion. A dimension of exactly 
one permits a self-consistent solution using an exponential quark density 
inferred from a dipole fit to the electromagnetic form factors. A dimension 
of two-thirds results in an effective potential similar to one used previously 
to fit meson and baryon excited-state spectra. 
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